Abstract
This paper focuses on the finite element method for Caputo‐type parabolic equation with spectral fractional Laplacian, where the time derivative is in the sense of Caputo with order in (0,1) and the spatial derivative is the spectral fractional Laplacian. The time discretization is based on the Hadamard finite‐part integral (or the finite‐part integral in the sense of Hadamard), where the piecewise linear interpolation polynomials are used. The spatial fractional Laplacian is lifted to the local spacial derivative by using the Caffarelli–Silvestre extension, where the finite element method is used. Full‐discretization scheme is constructed. The convergence and error estimates are obtained. Finally, numerical experiments are presented which support the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.