Abstract
The Filon Norte orebody (Tharsis, Iberian Pyrite Belt) is one of the largest pyrite-rich massive sulphide deposits of the world. The present structure of the mineralization consists of an internally complex low-angle north-dipping thrust system of Variscan age. There are three major tectonic units separated by thick fault zones, each unit with its own lithologic and hydrothermal features. They are internally organized in a hinterland dipping duplex sequence with high-angle horses of competent rocks (igneous and detritic rocks and massive sulphides) bounded by phyllonites. The mineralization is within the Lower Unit and is composed of several stacked sheets of massive sulphides and shales hosting a stockwork zone with no obvious zonation. The Intermediate Unit is made up of pervasively ankeritized shales and basalts (spilites). Here, hydrothermal breccias are abundant. The Upper Unit is the less hydrothermally altered one and consists of silicified dacites and a diabase sill. The tectonic reconstruction suggests that the sequence is inverted and the altered igneous rocks were originally below the orebody. Carbon, oxygen and sulphur isotopes in the massive sulphides and hydrothermal rocks as well as the mineral assemblage and the paragenetic succession suggest that the sulphide precipitation in the sea floor took place at a low temperature (<≈150 °C) without indication, at least in the exposed section, of a high-temperature copper-rich event. Sporadic deep subsea-floor boiling is probably responsible for the formation of hydrothermal breccias and the wide extension of the stockwork. Its Co-Au enrichment is interpreted as being related with the superposition of some critical factors, such as the relationship with black shales, the low temperature of formation and the boiling of hydrothermal fluids. The present configuration and thickness of the orebody is due to the tectonic stacking of a thin and extensive blanket (2–4 km2) of massive sulphides with low aspect ratio. They were formed by poorly focused venting of hot modified seawater equilibrated with underlying rocks into the seafloor. Massive sulphide precipitation took place by hydrothermal fluid quenching, bacteriogenic activity and particle settling in an unusual, restricted, euxinic and shallow basin (brine pool?) with a low detritic input but with important hydrothermal activity related to synsedimentary extensional faulting. Resedimentation of sulphides seems to be of major importance and responsible for the observed well-mixed proximal and distal facies. The tectonic deformation is largely heterogeneous and has been mostly channelled along the phyllonitic (tectonized shales) deformation bands. Thus, sedimentary and diagenetic textures are relatively well-preserved outside the deformation bands. In the massive sulphides, superimposed Variscan recrystallization is not very important and only some early textures are replaced by metamorphic/tectonic ones. The stockwork is much more deformed than the massive sulphides. The deformation has a critical effect on the present morphology of the orebody and the distribution of the ore minerals. This deposit is a typical example of the sheet-like, shale-hosted, anoxic, low temperature and Zn-rich massive sulphides developed in a ensialic extensional basin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have