Abstract

Human precision-cut lung slices (hPCLS) prepared from fibrotic lungs recapitulate the pathophysiological hallmarks of fibrosis. These hallmark features can also be induced by treating non-fibrotic hPCLS with a fibrotic cocktail (FC). As a result, the fibrotic and fibrosis-induced hPCLS are rapidly emerging as preferred models for disease modeling and drug discovery. However, current hPCLS models are limited by tissue viability in culture, as they are usually only viable for one week after harvesting. Here, we demonstrate that the fibrotic hPCLS can be cryopreserved, stored for months, and then thawed on demand without loss of hPCLS viability or protein content for 14 days post-thawing. Cryopreservation also preserves the pro-fibrotic potential of non-fibrotic hPCLS. Specifically, when we treated the thawed non-fibrotic hPCLS with an FC, we observed significant pro-fibrotic cytokine secretion and elevated tissue stiffness. These pro-fibrotic changes were inhibited by the small-molecule tyrosine kinase inhibitor, Nintedanib. Taken together, our work indicates that a feasible solution to prolong the pre-clinical utility of fibrotic and fibrosis-induced hPCLS is cryopreservation. We anticipate that cryopreserved hPCLS will serve as an advantageous predictive model for the evaluation of pro-fibrotic pathways during acute and chronic toxicity testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.