Abstract

In addition to its well-established function in supplying the energy for carbon dioxide assimilation, light plays a regulatory role in photosynthesis. The ferredoxin/thioredoxin system is a major mechanism whereby light functions in this capacity. Here, light absorbed by chlorophyll is converted via ferredoxin into a reductant messenger, reduced thioredoxin, that interacts with key target enzymes, thereby changing their catalytic activities. In this way, the green plant achieves maximum efficiency of its photosynthetic (light) and heterotrophic (dark) capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.