Abstract
The light-harvesting chlorophyll a/b proteins associated with PS II (LHC II) are often considered to have a regulatory role in photosynthesis. The photosynthetic responses of four chlorina mutants of barley, which are deficient in LHC II to varying degrees, are examined to evaluate whether LHC II plays a regulatory role in photosynthesis. The efficiencies of light use for PS I and PS II photochemistry and for CO2 assimilation in leaves of the mutants were monitored simultaneously over a wide range of photon flux densities of white light in the presence and absence of supplementary red light. It is demonstrated that the depletions of LHC II in these mutants results in a severe imbalance in the relative rates of excitation of PS I and PS II in favour of PS I, which cannot be alleviated by preferential excitation of PS II. Analyses of xanthophyll cycle pigments and fluorescence quenching in leaves of the mutants indicated that the major LHC II components are not required to facilitate the light-induced quenching associated with zeaxanthin formation. It is concluded that LHC II is important to balance the distribution of excitation energy between PS I and PS II populations over a wide range of photon flux densities. It appears that LHC II may also be important in determining the quantum efficiency of PS II photochemistry by reducing the rate of quenching of excitation energy in the PS II primary antennae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.