Abstract
BackgroundThe microorganisms populating the gastro-intestinal tract of vertebrates, collectively known as “microbiota”, play an essential role in digestion and are important in regulating the immune response. Whereas the intestinal microbiota in humans and model organisms has been studied for many years, much less is known about the microbiota populating the intestinal tract of wild animals.ResultsThe relatively large number of raptors admitted to the Tufts Wildlife Clinic on the Cummings School of Veterinary Medicine at Tufts University campus provided a unique opportunity to investigate the bacterial microbiota in these birds. Opportunistic collection of fecal samples from raptors of 7 different species in the orders Strigiformes, Accipitriformes, and Falconiformes with different medical histories generated a collection of 46 microbiota samples. Based on 16S amplicon sequencing of fecal DNA, large β-diversity values were observed. Many comparisons exceeded weighted UniFrac distances of 0.9. Microbiota diversity did not segregate with the taxonomy of the host; no significant difference between microbiota from Strigiformes and from Accipitriformes/Falconiformes were observed. In contrast, in a sample of 22 birds admitted for rehabilitation, a significant effect of captivity was found. The change in microbiota profile was driven by an expansion of the proportion of Actinobacteria. Based on a small number of raptors treated with anti-microbials, no significant effect of these treatments on microbiota α-diversity was observed.ConclusionsThe concept of “meta-organism conservation”, i.e., conservation efforts focused on the host and its intestinal microbiome has recently been proposed. The observed effect of captivity on the fecal microbiota is relevant to understanding the response of wildlife to captivity and optimizing wildlife rehabilitation and conservation efforts.
Highlights
The microorganisms populating the gastro-intestinal tract of vertebrates, collectively known as “microbiota”, play an essential role in digestion and are important in regulating the immune response
Global analysis of raptor microbiota The bacterial microbiota profile collected from 46 raptors was highly diverse
Given the large proportion of near-maximal UniFrac values, Earth Mover Distance (EMD) was used in all subsequent analyses of β-diversity
Summary
The microorganisms populating the gastro-intestinal tract of vertebrates, collectively known as “microbiota”, play an essential role in digestion and are important in regulating the immune response. Research on the effect of captivity on the intestinal microbiota has compared wild and captive conspecific animals. An example of such a study compared the fecal microbiota of wild and matching captive species housed in eight zoos [13]. As no species was represented by more than 10 captive or wild individuals, the absence of an observed effect of captivity may reflect the small sample size and the large number of uncontrolled variables. Two studies on avian species have revealed changes in the composition of bacterial populations due to captivity when comparing wild and captive birds [14, 15]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have