Abstract

We analyzed the features of the longitudinal distribution of the areas of solar spots during the solar activity minima, from the 11th cycle to the last minimum, based on data provided by the Greenwich Observatory and the Marshall Research Center. We discovered that the solar spots evolved in one or two neighboring bands (in terms of longitude), the Carrington longitude of which smoothly displaced from the east to the west, in the phase of the deep minimum in all of the considered cases. The spots at the high latitudes associated with a “new” cycle evolved on the same longitude bands. All of this led to the noticeable longitudinal asymmetry of magnetic fluxes related to the spots and flocculi. Based on our research, we propose the hypothesis that a nonaxisymmetric component of the total magnetic flux of the Sun is generated, together with the dipole component, by the solar dynamo mechanism, which is a typical feature of the phase of a minimum between the solar activity cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call