Abstract
Ocean current is highly related to the interaction between ocean and atmosphere. By measuring the speed and direction of the ocean current from space, we can investigate the ocean- atmosphere interaction on a global scale. The ocean-atmosphere interaction helps to maintain the balance that is essential for planet habitability. However, the conventional scatterometer is unable to measure the ocean current vector. To achieve this, a potentially feasible approach is to use a bigger antenna, a higher PRF, and measure the interferometric phase of two successive echoes. This paper derives four decorrelation factors, and provides the phase error model first. Then, an end-to-end simulation model is established, and it is used to analyze the feasibility of ocean surface current measurement from space. Based on the simulation model, the system parameters are optimized. The simulation results show that the current speed standard deviation (Std), which means the measurement accuracy, in along-track and cross-track direction is smaller than 0.1 m/s when the wind speed is larger than 4 m/s. The swath can be used for current vector inversion that is greater than 70% when the wind speed is larger than 7 m/s. Meanwhile, Kpc of the modified scatterometer is computed and the results show that Kpc is better than the traditional pencil-beam rotating scatterometer when the wind speed is larger than 6 m/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.