Abstract

The feasibility for natural graphite (NG) to replace artificial graphite (AG) in organic electrolytes with different additives are investigated. Although the strong film-forming additives contributes to form robust solid electrolyte interphase (SEI) film on graphite particle surface, great differences in gas evolution, lithium inventory loss and other side reactions are observed. Lithium bis(oxalato)borate (LiBOB) and Fluoroethylene carbonate (FEC) are found more effective and the combination shows to be more promising. In the optimized electrolyte, natural graphite anode exhibits excellent long-term cycling capability. After 800 cycles at high temperature, the capacity retention is comparable to that using artificial graphite. The mechanisms for the capacity-fading of the full cells with AG and NG anode are investigated by ICP, SEM and polarization studies. The results shows that NG electrode consumes more active lithium due to the rough surface and larger volume expansion. The rapid capacity-fading in the initial 100 cycles is related to the instability of the SEI film aroused from large volume expansion. The systematic analysis is inspiriting for the development of high performance lithium ion batteries with reduced cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call