Abstract

Abstract The northern Olympic Cu-Au province, Gawler craton, Australia, includes a series of magnetite-dominated deposits/prospects associated with minor Cu-Au mineralization such as the 8.37 million tonne Cairn Hill deposit. Cairn Hill has long been considered a deep, magnetite end member of the iron oxide copper-gold (IOCG) family that is largely represented in the southern Olympic province by the 1590 Ma hematite-dominated Olympic Dam, Carrapeteena, and Prominent Hill deposits. In contrast to the southern district, the deposits in the northern Olympic Cu-Au province are hosted in rocks that experienced multiple phases of high-temperature metamorphism and deformation. New U-Pb zircon geochronology shows the magnetite-hornblende lodes at Cairn Hill were formed at ca. 1580 Ma at amphibolite facies conditions. The magnetite lodes are crosscut by ca. 1515 Ma granitic dikes. A second high-temperature event is recorded by U-Pb monazite geochronology at ca. 1490 Ma and involved deformation and metamorphism along the Cairn Hill shear zone at conditions of 4.6 to 5.3 kbar and 740° to 770°C. The 1490 Ma event reworked the iron lodes and 1515 Ma granitic dikes. However, Cu mineralization at Cairn Hill occurs in brittle fractures and quartz-biotite veins, overprinting the 1490 Ma deformation and metamorphism. Despite a spatial association between magnetite and Cu, the long thermal history that affected magnetite mineralization and the clear petrographic links between magnetite and high-temperature granulite facies minerals contrast with the late, low-temperature hydrothermal Cu mineralization and indicate the two are not paragenetically related. Therefore, the spatial but not temporal association between magnetite and Cu has effectively overlain two distinct episodes of mineralization to create the Fe-Cu deposit observed today. Although this fits within the broad IOCG deposit family, exploration strategies for Cairn Hill-style composite deposits should be distinct from IOCG deposits with cogenetic Fe and Cu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call