Abstract
In order to ensure driving safety and advanced driver assistance systems (ADAS) attracted more and more attention. Lane departure warning system is an important part of the system. Fast and stable lane detection is a prerequisite for Lane detection under complex background. In this paper, we propose a new lane detection method through a bird’s eye view maps and modified RANSAC (random sampling) based on inspiration from the road feature extraction algorithm for remote sensing images. According to the image of a bird’s eye view, we can identify the tag line through progressive probabilistic Hough transform in the opposite lane detection. Then the group rows are detected by a new weighting scheme based on distance, we can get a candidate lane field. Each field, Lane the RANSAC algorithm is improved and the dual-model fitting. Therefore, the curvature of the road direction can be predicted and the slope of the line. Finally, our results show that lane detection algorithm is robust and real-time performance in a variety of road conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.