Abstract
The Landau-Lifshitz-Gilbert (LLG) equation is a fascinating nonlinear evolution equation both from mathematical and physical points of view. It is related to the dynamics of several important physical systems such as ferromagnets, vortex filaments, moving space curves, etc. and has intimate connections with many of the well-known integrable soliton equations, including nonlinear Schrödinger and sine-Gordon equations. It can admit very many dynamical structures including spin waves, elliptic function waves, solitons, dromions, vortices, spatio-temporal patterns, chaos, etc. depending on the physical and spin dimensions and the nature of interactions. An exciting recent development is that the spin torque effect in nanoferromagnets is described by a generalization of the LLG equation that forms a basic dynamical equation in the field of spintronics. This article will briefly review these developments as a tribute to Robin Bullough who was a great admirer of the LLG equation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have