Abstract
The elastic field of a time-harmonic point source acting in a transversely isotropic, homogeneous, linearly elastic solid is studied. First, the representation of the Green’s tensor as an integral over the unit sphere is obtained. It consists of three waves: quasi-longitudinal (P), shear-horizontal (SH) and quasi-shear (SV). Then, an original exact analytical solution for the SH wave in terms of elementary functions is derived. The complete far-field asymptotic approximation of P and SV waves is obtained next, using the uniform stationary phase method. For the P wave it involves the leading term of the ray series since there is only one arrival of this wave. The wave surface for the SV wave contains conical points and cuspidal edges. The asymptotic description applicable near these singular directions is derived involving the Airy and Bessel functions. The directions close to the points of tangential contact of the SH and SV sheets of the wave surface are also treated. Numerical results in both frequency and time domain are presented. They show that the agreement between the outputs of the asymptotic and direct numerical codes is very good throughout all regions but the former can be orders of magnitude faster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.