Abstract
The elastic wavefield generated by a point source of tractions acting on the surface of a transversely isotropic half–space is studied. The symmetry axis of the solid is oriented arbitrarily with respect to the surface of the half–space. First, the integral representation of the time–harmonic Green9s tensor is given. Then the complete far–field asymptotic approximation of a quasi–longitudinal (qP) and two quasi–shear (qSH and qSV) waves is derived. The qP wave is described by the leading term of the ray series, since there is only one arrival of this wave. The qSH wave is treated similarly everywhere apart from the so–called kissing–point boundary layer, where the qSH and qSV wavefronts are tangentially close to each other. A special asymptotic formula is obtained for this case. The qSV sheet of the wave surface is allowed to have conical points and cuspidal edges. Thus, the far–field approximation of the qSV wave involves ray–asymptotic expressions while inside the geometrical regions (where either one or three qSV arrivals exist), or else boundary–layer asymptotics inside conical–point, cuspidal–edge and kissing–point boundary layers. At the end of the paper we present numerical results of the simulation of pulse propagation. A good agreement between the asymptotic and direct numerical codes is achieved but the former is orders of magnitude faster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.