Abstract

Two-dimensional van der Waals materials (2D materials for short) have developed into a novel material family that has attracted much attention, and thus the integration, performance and application of 2D van der Waals heterostructures has been one of the research hotspots in the field of condensed matter physics and materials science. The 2D van der Waals heterostructures provide a flexible and extensive platform for exploring diverse physical effects and novel physical phenomena, as well as for constructing novel spintronic devices. In this topical review article, starting with the transfer technology of 2D materials, we will introduce the construction, performance and application of 2D van der Waals heterostructures. Firstly, the preparation technology of 2D van der Waals heterostructures in detail will be presented according to the two classifications of wet transfer and dry transfer, including general equipment for transfer technology, the detailed steps of widely used transfer methods, a three-dimensional manipulating method for 2D materials, and hetero-interface cleaning methods. Then, we will introduce the performance and application of 2D van der Waals heterostructures, with a focus on 2D magnetic van der Waals heterostructures and their applications in the field of 2D van der Waals magnetic tunnel junctions and moiré superlattices. The development and optimization of 2D materials transfer technology will boost 2D van der Waals heterostructures to achieve breakthrough results in fundamental science research and practical application.

Highlights

  • The dashed line encloses the tunnel junction area; (e) Conductance through a bilayer CrI3 tunnel barrier as a function of an out-of-plane applied magnetic field with 500 μV AC excitation; (f-g) FGT/hBN/ FGT MTJs[125]: (f) Schematic representation of the van der Waals heterostructure; (g) Tunneling resistance measured at T = 4.2 K with B applied parallel to the FGT c-axis

  • (f)-(h) WTe2/Fe3GeTe2 heterostructure[140]: (f) Optical image of WTe2/Fe3GeTe2 heterostructure; (g) Magnetic field dependence of Hall resistivity, showing a peak and dip near the transition edge before the magnetization saturates, which is a sign of the topological Hall effect; (h) Lorentz transmission electron microscopy observation of skyrmion lattice from under focus to over focus on WTe2/40 L Fe3GeTe2 samples at 180 K with a field of 510 Oe. 此外,过渡金属二硫族化物异质结构形成的摩尔超晶格中发现了光学领域很 重要的激子现象。Wang 课题组的 Jin 等人[135]采用聚对苯二甲酸乙二酯(PET) 印章辅助的干法转移技术[40]制备一定转角的 WSe2/WS2 二维异质结构,观测到摩 尔超晶格的激子态。Xu 课题组的 Seyler 等人[141] 采用干法转移技术制备 h-BN 薄膜封装的 MoSe2/WSe2 范德瓦尔斯异质结构 , 在具有一定扭转角度的 MoSe2/WSe2 双层异质结构中观察到受摩尔电势束缚的能谷激子特征。Li 教授课 题组的 Tran 等人[142]采用 PDMS 辅助的全干法转移技术[44]制备 h-BN 封装且微小 旋转角度的 MoSe2/WSe2 双层二维异质结构,并在此异质结构中观测到多个层间 激子共振现象。

Read more

Summary

Introduction

PDMS-based fully dry transfer method[44]. 图 11 基于 PDMS 全干性转移法制备的二维磁性范德瓦尔斯异质结构 (a)-(d)为 FPS/FGT 和 FPS/FGT/FPS 异质结构[98]:(a) FPS/FGT 异质结构的光学图片;(b) FPS/FGT 异质结构的原 子力显微镜图;(c)-(d) 两种异质结构与单一 FGT 的 Kerr 信号随着温度的变化关系,结果显 示异质结构的形成可以有效提升 TC;(e)-(h)为 CrBr3/石墨烯的异质结构[99]:(e) CrBr3/石墨烯 异质结构的光学图片;(f) 非局域测量技术探测塞曼自旋霍尔效应的示意图;(g)异质结构中 石墨烯的非局域电阻在不同磁场下随栅压的变化情况;(h)非局域电阻随温度的变化情况。 (i)-(l)为 CGT/WS2 异质结[100]:(i) CGT/WS2 异质结构的光学图片;(j)单层的 WS2 和不同 CGT/WS2 异质结构的光致发光光谱;(k) 开尔文探针显微镜的示意图;(l) 室温下利用开尔 文探针显微镜测量的 CGT、WS2 和异质结构的表面能或功函数 Fig. 11.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call