Abstract
The F-plasmid-encoded TraI protein, also known as DNA helicase I, is a bifunctional protein required for conjugative DNA transfer. The enzyme catalyzes two distinct but functionally related reactions required for the DNA processing events associated with conjugation: the site- and strand-specific transesterification (relaxase) reaction that provides the nick required to initiate strand transfer and a processive 5'-to-3' helicase reaction that provides the motive force for strand transfer. Previous studies have identified the relaxase domain, which encompasses the first approximately 310 amino acids of the protein. The helicase-associated motifs lie between amino acids 990 and 1450. The function of the region between amino acids 310 and 990 and the region from amino acid 1450 to the C-terminal end is unknown. A protein lacking the C-terminal 252 amino acids (TraIDelta252) was constructed and shown to have essentially wild-type levels of transesterase and helicase activity. In addition, the protein was capable of a functional interaction with other components of the minimal relaxosome. However, TraIDelta252 was not able to support conjugative DNA transfer in genetic complementation experiments. We conclude that TraIDelta252 lacks an essential C-terminal domain that is required for DNA transfer. We speculate this domain may be involved in essential protein-protein interactions with other components of the DNA transfer machinery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.