Abstract

We prove that the extremal process of branching Brownian motion, in the limit of large times, converges weakly to a cluster point process. The limiting process is a (randomly shifted) Poisson cluster process, where the positions of the clusters is a Poisson process with intensity measure with exponential density. The law of the individual clusters is characterized as branching Brownian motions conditioned to perform “unusually large displacements”, and its existence is proved. The proof combines three main ingredients. First, the results of Bramson on the convergence of solutions of the Kolmogorov–Petrovsky–Piscounov equation with general initial conditions to standing waves. Second, the integral representations of such waves as first obtained by Lalley and Sellke in the case of Heaviside initial conditions. Third, a proper identification of the tail of the extremal process with an auxiliary process (based on the work of Chauvin and Rouault), which fully captures the large time asymptotics of the extremal process. The analysis through the auxiliary process is a rigorous formulation of the cavity method developed in the study of mean field spin glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.