Abstract

ABSTRACT This study focused on the feasibility of identifying and recycling inorganic phase-change materials (PCMs) from sugar industry wastes in two cities of Qazvin and Hamadan in Iran. In this study, dry sugar beet pomace, sugar beet pomace, sugar beet molasses, leaves and plant residues of sugar beet and sugarcane bagasse were investigated. The inorganic materials were identified by X-ray Diffraction (XRD), thermal characteristics were determined by differential scanning calorimetry (DSC), and morphological characteristics were determined by scanning electron microscopy (SEM). Additionally, physical and thermal properties of molasses and bagasse samples were analyzed to determine their suitability as inorganic PCMs. The results of this study demonstrated that molasses and bagasse have the potential to be used as mineral PCMs in thermal energy storage applications. The results of this study demonstrated that in the wet sugar beet pomace the highest and lowest concentrations of inorganic PCMs were silicon dioxide (SiO2) and sodium chloride (NaCl), respectively. Moreover, the highest calcium fluoride (CaF₂) composition was reported in dry sugar beet pomace. In the samples of leaves and residues of sugar beet and sugarcane bagasse, the highest concentration of was NaCl. The detection and recycling of mineral PCMs from sugar industry wastes offer a sustainable solution for waste management and provide a renewable source of thermal energy storage materials. Implication Statement This study demonstrated the potential for the extraction of inorganic phase-change materials from sugar industry wastes as a means of solid waste management. By repurposing these materials, we can reduce the environmental impact of sugar production and contribute to sustainable practices in the industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.