Abstract
Over the past two decades, rapid climate change has severely impacted people’s lives globally, affecting their safety and sustainability. Water, a vital human resource, has been severely affected, with drought and high temperatures leading to desertification, the drying up of rivers and lakes, spontaneous fires in forests, and massive floods and torrents due to melting ice and rising sea and ocean surface water levels. The expected impacts of climate change on the Nile, Egypt’s primary water source, are significant. These impacts can vary across regions, depending on factors like local climate, socio-economic dynamics, topography, and environmental nature. Upper Egypt, characterized by arid and semi-arid regions, faces water scarcity and socio-economic development challenges. Climate change exacerbates these issues, posing significant threats to the region’s ecological sustainability and socio-economic development. Therefore, it is crucial to address these impacts to ensure the Nile’s continued vitality and sustainability. The study aims to analyze the climate change data over the past few decades, analyze its characteristics, and model its effects on Upper Egypt’s water sources. The study expected a big decrease in the water resources of the Nile. While what is currently occurring in terms of fluctuating rainfall rates between scarcity and severity contradicts the results of those studies, that is the best evidence of the need for further research and studies to obtain more reliable and consistent results with the reality that it may help decision-makers to develop scenarios to manage climate change effectively, preventing or reducing negative effects, and finding suitable alternatives. Studies predict a 10% decrease in Nile revenue at Aswan High Dam Lake by 2095, with some predicting a 30% increase. This lack of credibility underscores the need for more comprehensive studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.