Abstract

ABSTRACT Stellar candidates in the Ursa Minor (UMi) dwarf galaxy have been found using a new Bayesian algorithm applied to Gaia EDR3 data. Five of these targets are located in the extreme outskirts of UMi, from ∼5 to 12 elliptical half-light radii (rh), where rh(UMi) = 17.32 ± 0.11 arcmin, and have been observed with the high-resolution Gemini Remote Access to CFHT ESPaDOnS Spectrograph at the Gemini North telescope. Precise radial velocities (σRV < 2 km s−1) and metallicities ($\sigma _{\rm {{\rm [Fe/H]}}}\ \lt\ 0.2$ dex) confirm their memberships of UMi. Detailed analysis of the brightest and outermost star (Target 1, at ∼12rh), yields precision chemical abundances for the α (Mg, Ca, and Ti), odd-Z (Na, K, and Sc), Fe-peak (Fe, Ni, and Cr), and neutron-capture (Ba) elements. With data from the literature and APOGEE data release 17, we find the chemical patterns in UMi are consistent with an outside-in star-formation history that includes yields from core-collapse supernovae, asymptotic giant branch stars, and Type Ia supernovae. Evidence for a knee in the [α/Fe] ratios near [Fe/H] ∼ −2.1 indicates a low star-formation efficiency similar to that in other dwarf galaxies. Detailed analysis of the surface number density profile shows evidence that UMi’s outskirts have been populated by tidal effects, likely as a result of completing multiple orbits around the Galaxy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call