Abstract
Neurotrauma is among the main causes of human disability and mortality. Nerve injury impairs not only neurons but also causes death of satellite glial cells remote from the injury site. We studied the dynamics of expression of different proapoptotic proteins (E2F1, p53, caspase 3) in the dorsal root ganglia (DRG) of a rat after sciatic nerve transection. TUNEL staining and immunoblotting were used for analysis of cell apoptosis and axotomy-induced biochemical changes. Apoptosis of glial cells was observed at 24h after sciatic nerve transection and increased on day 7, when apoptosis of some neurons only started. The earliest proapoptotic event in the injured DRG was overexpression of transcription factor E2F1 at 4h after sciatic nerve transection. This preceded the induction of p53 and cleavage of caspase 3 at 24-h post-axotomy. The nerve injury marker amyloid precursor protein and the nerve regeneration marker GAP-43 were overexpressed in DRG on day 7 after sciatic nerve transection. We also developed a novelfluorescence method fordifferential visualization of the rat DRG and nerves by means of double staining with propidium iodide and Hoechst 33342 that impart red and blue-green fluorescence, respectively. The present experiments showed that glial cells remote from the nerve transection site were more vulnerable to axotomy than DRG neurons. E2F1 and p53 may be considered promising molecular targets for development of potential neuroprotective agents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have