Abstract

We present a general method to obtain a closed, finite formula for the exponential map from the Lie algebra to the Lie group, for the defining representation of the orthogonal groups. Our method is based on the Hamilton-Cayley theorem and some special properties of the generators of the orthogonal group, and is also independent of the metric. We present an explicit formula for the exponential of generators of the $SO_+(p,q)$ groups, with $p+q = 6$, in particular we are dealing with the conformal group $SO_+(2,4)$, which is homomorphic to the $SU(2,2)$ group. This result is needed in the generalization of U(1) gauge transformations to spin gauge transformations, where the exponential plays an essential role. We also present some new expressions for the coefficients of the secular equation of a matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.