Abstract
In this article, by the mean-integral of the conserved quantity, we prove that the one-dimensional non-isentropic gas dynamic equations in an ideal gas state do not possess a bounded invariant region. Moreover, we obtain a necessary condition on the state equations for the existence of an invariant region for a non-isentropic process. Finally, we provide a mathematical example showing that with a special state equation, a bounded invariant region for the non-isentropic process may exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.