Abstract

We study the excited random walk, in which a walk that is at a site that contains cookies eats one cookie and then hops to the right with probability p and to the left with probability q=1-p. If the walk hops onto an empty site, there is no bias. For the 1-excited walk on the half-line (one cookie initially at each site), the probability of first returning to the starting point at time t scales as t^{-(2-p)}. Although the average return time to the origin is infinite for all p, the walk eats, on average, only a finite number of cookies until this first return when p<1/2. For the infinite line, the probability distribution for the 1-excited walk has an unusual anomaly at the origin. The positions of the leftmost and rightmost uneaten cookies can be accurately estimated by probabilistic arguments and their corresponding distributions have power-law singularities near the origin. The 2-excited walk on the infinite line exhibits peculiar features in the regime p>3/4, where the walk is transient, including a mean displacement that grows as t^{nu}, with nu>1/2 dependent on p, and a breakdown of scaling for the probability distribution of the walk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.