Abstract

In this paper we study a substantial generalization of the model of excited random walk introduced in [Electron. Commun. Probab. 8 (2003) 86-92] by Benjamini and Wilson. We consider a discrete-time stochastic process $(X_n,n=0,1,2,...)$ taking values on ${\mathbb{Z}}^d$, $d\geq2$, described as follows: when the particle visits a site for the first time, it has a uniformly-positive drift in a given direction $\ell$; when the particle is at a site which was already visited before, it has zero drift. Assuming uniform ellipticity and that the jumps of the process are uniformly bounded, we prove that the process is ballistic in the direction $\ell$ so that $\liminf_{n\to\infty}\frac{X_n\cdot \ell}{n}>0$. A key ingredient in the proof of this result is an estimate on the probability that the process visits less than $n^{{1/2}+\alpha}$ distinct sites by time n, where $\alpha$ is some positive number depending on the parameters of the model. This approach completely avoids the use of tan points and coupling methods specific to the excited random walk. Furthermore, we apply this technique to prove that the excited random walk in an i.i.d. random environment satisfies a ballistic law of large numbers and a central limit theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.