Abstract

We investigate a cosmological model in which dark energy identified with the vacuum energy which is running and decaying. In this model vacuum is metastable and decays into a bare (true) vacuum. This decaying process has a quantum nature and is described by tools of the quantum decay theory of unstable systems. We have found formulas for an asymptotic behavior of the energy density of dark energy in the form of a series of inverse powers of the cosmological time. We investigate the dynamics of FRW models using dynamical system methods as well as searching for exact solutions. From dynamical analysis we obtain different evolutional scenarios admissible for all initial conditions. For the interpretation of the dynamical evolution caused by the decay of the quantum vacuum we study the thermodynamics of the apparent horizon of the model as well as the evolution of the temperature. For the early Universe, we found that the quantum effects modified the evolution of the temperature of the Universe. In our model the adiabatic approximation is valid and the quantum vacuum decay occurs with an adequate unknown particle which constitutes quantum vacuum. We argue that the late-time evolution of metastable energy is the holographic dark energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.