Abstract

The development of piezoceramics with high Curie temperature and high piezoelectrical performance has always been a long-cherished goal for many researchers. In this work, we have fabricated 0.55BiFeO3-(0.45-x)PbTiO3-xBa(Zr0.3Ti0.7)O3 ternary ceramics near the morphotropic phase boundary (MPB) by conventional solid-state method. XRD patterns indicate that there is an evolution from the tetragonal (T) to pseudo-cubic (PC) phase with BZT content increasing from 0.125 to 0.225. Also, the slim P-E loop transforms into a saturated shape with the decrease of coercive field Ec. Piezoresponse force microscope (PFM) analysis reveals that when x (BZT content) increases, domain density increases. The optimum piezoelectric coefficient d33 (~220 pC/N) is obtained at x = 0.175, while Curie temperature TC and dielectric loss tanδ are 434 °C and 0.019, respectively. These results show that BF-PT-based piezoceramics are competitive candidates in future high-temperature applications of piezoelectric ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.