Abstract
Humins (HMs), the insoluble faction of humic substances (HSs), play a pivotal role in the bioremediation of pollutants by acting as electron shuttles that modulate the interactions between microorganisms and pollutants. This crucial function is intricately linked to their structural composition and electron transfer capabilities. However, the dynamics of the electron transfer capacity (ETC) of HM extracted during the composting process and its determinants have yet to be fully elucidated. This study undertakes a comprehensive analysis of the ETC of HM derived from composting, employing electrochemical techniques alongside spectroscopic methods and elemental analysis to explore the influencing factors, including the electron accepting capacity (EAC), electron donating capacity (EDC), and electron reversible rate (ERR). Our findings reveal substantial variations in the EAC and EDC of HM throughout the composting process, with EAC values ranging from 133.03-220.98 μmol e- gC-1 and EDC values from 111.17-229.33 μmol e- gC-1. Notably, the composting process enhances the ERR and EDC of HM while diminishing their EAC. This shift is accompanied by an augmented presence of aromatic structures, polar functional groups, quinones, and nitrogen - and sulfur-containing moieties, thereby boosting the HM's EDC. Conversely, the reduction in EAC is associated with a decline in lignin carbon content and the abundance of oxygen-containing moieties, as well as the diminishment of visible fulvic-like and protein-like substances within HM. Importantly, humic-like substances and nitrogen-containing moieties within HM demonstrated the capacity for repeated electron transfer, underscoring their significance in the context of environmental remediation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have