Abstract

The substitution rate of the individual positions in an alignment of 750 eukaryotic small ribosomal subunit RNA sequences was estimated. From the resulting rate distribution, an equation was derived that gives a more precise relationship between sequence dissimilarity and evolutionary distance than hitherto available. Trees constructed on the basis of evolutionary distances computed by this new equation for small ribosomal subunit RNA sequences from ciliates, apicomplexans, dinoflagellates, oomycetes, hyphochytriomycetes, bicosoecids, labyrinthuloids, and heterokont algae show a more consistent tree topology than trees constructed in the absence of "substitution rate calibration." In particular, they do not suffer from anomalies caused by the presence of extremely long branches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call