Abstract

Abstract A pronounced snowfall maximum occurs about 30 km downwind of Lake Ontario over the 600-m-high Tug Hill Plateau (hereafter Tug Hill), a region where lake-effect convection is affected by mesoscale forcing associated with landfall and orographic uplift. Profiling radar data from the Ontario Winter Lake-effect Systems field campaign are used to characterize the inland evolution of lake-effect convection that produces the Tug Hill snowfall maximum. Four K-band profiling Micro Rain Radars (MRRs) were aligned in a transect from the Ontario coast onto Tug Hill. Additional observations were provided by an X-band profiling radar (XPR). Analysis is presented of a major lake-effect storm that produced 6.4-cm liquid precipitation equivalent (LPE) snowfall over Tug Hill. This event exhibited strong inland enhancement, with LPE increasing by a factor of 1.9 over 15-km horizontal distance. MRR profiles reveal that this enhancement was not due to increases in the depth or intensity of lake-effect convection. With increasing inland distance, echoes transitioned from a convective toward a stratiform morphology, becoming less intense, more uniform, more frequent, and less turbulent. An inland increase in echo frequency (possibly orographically forced) contributes somewhat to snowfall enhancement. The XPR observations reproduce the basic vertical structure seen by the MRRs while also revealing a suppression of snowfall below 600 m AGL upwind of Tug Hill, possibly associated with subcloud sublimation or hydrometeor advection. Statistics from 29 events demonstrate that the above-described inland evolution of convection is common for lake-effect storms east of Lake Ontario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call