Abstract

The cichlid fishes in the East African Great Lakes exhibit a great diversity of color patterns, presumably as adaptations to species-specific habitats and/or due to the action of sexual selection on color for species discrimination or female mate choice. To elucidate the mechanisms underlying such pigment pattern diversity, we cloned the cichlid homologs of tyrosinase, endothelin receptor b1, mitf, and Aim1 that previously had been cloned and characterized from pigmentation mutants of zebrafish and medaka fish. Gene sequence analysis among five cichlid species from the Great Lakes shows that the evolutionary rate of amino acid replacement in mitf is the highest of these four genes. We then compared the mitf amino acid replacement rates between species from the lacustrine and tilapiine/steatocranus lineages, and between Lake Malawi- and Victoria-haplochromine cichlids and Lake Tanganyika Lamprologini. We show that the evolutionary rate within the lacustrine lineage is twice that of the tilapiine/steatocranus lineage, but that rates for the Malawi–Victoria haplochromine and Lamprologini lineages are almost the same. These results suggest that the accelerated evolution of mitf might have occurred concomitantly with pigment pattern diversification in Great Lakes species, but not necessarily correlated with species under intense sexual selection on male mating color via female mate choice. Finally, we characterized a novel alternatively spliced variant of cichlid mitf that is similar to a mammalian mitf splice variant generated using alternate splice sites. We suggest that this new variant in cichlids, like that in mammals, encodes an MITF transcriptional factor having higher relative DNA binding affinity. These data provide a novel example of functional convergence in which a particular splice variant is independently generated via alternative splicing of a specific gene in different lineages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.