Abstract
Models of cooperation among nonkin suggest that social assortment is important for the evolution of cooperation. Theory predicts that interacting phenotypes, whereby an individual's behavior depends on the behavior of its social partners, can drive such social assortment. We measured repeated indirect genetic effects (IGEs) during cooperative predator inspection in eight populations of Trinidadian guppies (Poecilia reticulata) that vary in their evolutionary history of predation. Four broad patterns emerged that were dependent on river, predation history, and sex: (i) current partner behavior had the largest effect on focal behavior, with fish from low-predation habitats responding more to their social partners than fish from high-predation habitats; (ii) different focal/partner behavior combinations can generate cooperation; (iii) some high-predation fish exhibited carryover effects across social partners; and (iv) high-predation fish were more risk averse. These results provide the first large-scale comparison of interacting phenotypes during cooperation across wild animal populations, highlighting the potential importance of IGEs in maintaining cooperation. Intriguingly, while focal fish responded strongly to current social partners, carryover effects between social partners suggest generalized reciprocity (in which one helps anyone if helped by someone) may contribute to the evolution of cooperation in some, but not all, populations of guppies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.