Abstract
Barrier systems contain lengthy, but complex, records of long-term environmental fluctuations. The Wilderness embayment, South Africa, contains a system of shore-parallel barriers reaching up to 200m above modern sea level. This study reports the results of chronological, topographical (both on- and off-shore), sedimentological and micromorphological analyses within the Wilderness embayment. Sixty-one new luminescence ages from sixteen sites in unconsolidated dunes and three separate barriers are presented which, when combined with previously published luminescence ages from the area, provide a high-resolution chronological framework for the emplacement and evolution of the barrier system. The preserved barriers have been constructed within at least the last two glacial–interglacial cycles with notable phases between 241–221ka, 159–143ka, 130–120ka, 92–87ka and post 6ka. Multiple phases of barrier construction occurred during sea-level highstands, with sediment deposition on each individual barrier occurring over at least two interglacials. Holocene evolution of the system sheds light on earlier events, with dune preservation occurring only during early regression from the Mid-Holocene highstand. Tectonic stability at Wilderness allowed glacio-eustatically formed shorelines to occupy similar positions on multiple occasions. This, in conjunction with a relatively humid climate and a well-vegetated landscape, enabled deflated sediment from beaches to form dunes which stacked upon each other to form an extensive and complex vertical accretionary sequence. Repeated erosion and recycling of pre-existing barriers as well as barrier construction on what is currently the off-shore platform during still-stands in sea-level regressional cycles, when sea levels dropped below ca −50m from the present day, has added to the complexity of the preserved terrestrial barrier record. The Wilderness barrier system contrasts with barriers developed elsewhere in the world where higher rates of crustal uplift have allowed preservation of a more complete and more widely spaced palaeorecord. This research also shows the utility of integrating off-shore topography as revealed by bathymetry, with terrestrial topographic data for the better understanding of the evolution of palaeo-coastlines and the preserved dune record found on present-day coastal plains. Local variation in the topography of the continental shelf at Wilderness has generated spatial and temporal complexity within the sedimentary records of individual barriers as well as having a significant influence on preservation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have