Abstract
Horses are a classic example of macroevolution in three major traits-large body size, tall-crowned teeth (hypsodonty), and a single toe (monodactyly)-but how and why monodactyly evolved is still poorly understood. Existing hypotheses usually connect digit reduction in horses to the spread and eventual dominance of open-habitat grasslands, which took over from forests during the Cenozoic; digit reduction has been argued to be an adaptation for speed, locomotor economy, stability, and/or increased body size. In this review, we assess the evidence for these (not necessarily mutually exclusive) hypotheses from a variety of related fields, including paleoecology, phylogenetic comparative methods, and biomechanics. Convergent evolution of digit reduction, including in litopterns and artiodactyls, is also considered. We find it unlikely that a single evolutionary driver was responsible for the evolution of monodactyly, because changes in body size, foot posture, habitat, and substrate are frequently found to influence one another (and to connect to broader potential drivers, such as changing climate). We conclude with suggestions for future research to help untangle the complex dynamics of this remarkable morphological change in extinct horses. A path forward should combine regional paleoecology studies, quantitative biomechanical work, and make use of convergence and modern analogs to estimate the relative contributions of potential evolutionary drivers for digit reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.