Abstract

In recent years, researchers have expressed a vested interest in the concepts surrounding flapping wing micro air vehicles (FWMAVs) that are capable of both range and complex maneuvering. Most research in this arena has found itself concentrated on topics such as flapping dynamics and the associated fluid-structure interactions inherent in the motion; however there still remain a myriad of questions concerning the structural qualities intrinsic to the wings themselves. Using nature as the template for design, FWMAV wings were constructed using carbon fiber and Kapton and tested under simplified flapping conditions by analyzing ‘frozen’ digital images of the deformed wing by methods of photogrammetry. This flapping motion was achieved via the design and construction of a flapper that emulates several of the kinematic features that can be seen in naturally occurring flyers. The response to this motion was then compared to the inspiring specimen's wings, the North American Hawkmoth ( Manduca Sexta), under the same flapping conditions in order to identify some of the key features that nature has deemed necessary for successful flight. Results showed that though the engineered wing emulated several of the structural characteristics of the biological wing; it still required some design modifications to compare more closely to the biological wing in the flapping motion. Additionally, this research also speaks to the effects of air on the biological wing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.