Abstract

Warm mix flame retardant asphalt mixture can reduce the energy dissipation and harmful gas emissions during asphalt pavement construction, as well as mitigate the adverse effects of road fires. For this, this paper studies the design and performance of a mixture modified with a combination of warm mix agent and flame retardant, and the pavement performance and flame retardancy of the modified mixture are evaluated. Additionally, a flame retardancy prediction model based on the radial basis function (RBF) neural network model is established. On this basis, the principal components analysis (PCA) model is used to analyze the most significant evaluation indicators affecting flame retardancy, and finally, a three-dimensional finite element model is developed to analyze the effects of loading on the pavement structure. The results show that compared to virgin asphalt mixture, the modified mixture shows a reduction in mixing and compaction temperatures by approximately 12 °C. The high-temperature performance of the mixture is improved, while the low-temperature performance and moisture stability slightly decrease, but its flame retardancy is significantly enhanced. The RBF neural network model revealed that the established flame retardancy prediction model has a high accuracy, allowing for precise evaluation of the flame retardancy. Finally, the PCA model identified that the combustion time has a significant effect on the flame retardancy of the asphalt mixture, and the finite element model revealed that the displacements of the warm mix fire retardant asphalt mixture were lower than virgin asphalt mixture in all directions under the loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.