Abstract

The evolution of the Eurekan deformation zones in the Arctic is closely related to the development of the circum-Greenland plate boundaries in Early Cenozoic times (53 – 34 Ma). Mostly, the Eurekan Orogeny or deformation has been interpreted as a predominantly compressive tectonic event, but the Eurekan deformational history in the Arctic was not the result of a single tectonic episode. It rather represents a complex sequence of successive tectonic stages, which produced a number of intra-continental deformation zones with changing, sometimes opposing, lateral, oblique and convergent kinematics in the Canadian Arctic Archipelago, north and NE Greenland, and Svalbard. The interaction between the continental plates, especially in combination with the development of transform faults, resulted onshore in the formation of several complex deformation zones and areas of Eurekan deformation. The Eurekan deformation can be divided into two major tectonic stages: the first phase in the Early Eocene was dominated by orthogonal compression in the West Spitsbergen Fold-and-Thrust Belt along the west margin of the Barents Shelf and contemporaneous sinistral strike-slip tectonics along the Wegener Fault and on Ellesmere Island, whereas the second phase in the Late Eocene was characterized by dextral strike-slip and compression on Ellesmere Island and contemporaneous dextral transpression and transtension along the De Geer Fracture Zone or Hornsund Fault Complex between NE Greenland and Spitsbergen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call