Abstract

The Bristol Channel Basin is a Mesozoic continental rift basin. The basin is an important analogue for offshore reservoirs. Relative cross-cutting relationships and correlation with adjacent sedimentary basins have previously been used to constrain the timing of basin development. In situ U–Pb carbonate geochronology has been used to date calcite slickenfibre development in the cores of normal, thrust and strike-slip faults in the East Quantoxhead and Kilve region of Somerset for the first time. Protracted north–south extension from c. 150 to 120 Ma formed normal faults. Subsequent north–south shortening from c. 50 to 20 Ma was accommodated by (1) mutually cross-cutting strike-slip faults, (2) minor east–west-striking thrust faults and (3) the reactivation of pre-existing normal faults. Throughout Cenozoic contraction, σ 2 and σ 3 remained similar in magnitude and periodically flipped to become vertical; this was probably controlled by local stress permutations and changes in fluid pressure. The timing of inversion is contemporaneous with dominant Pyrenean and later Alpine orogenic events, as well as the opening of the Mid-Atlantic Rift. Early inversion of the Bristol Channel Basin was probably driven by far-field Pyrenean deformation, with later contraction caused by Alpine forces. Ridge push from the Mid-Atlantic Rift exacerbated the reactivation of the basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.