Abstract

We show that for a Schrodinger operator with bounded potential on a manifold with cylindrical ends, the space of solutions that grows at most exponentially at infinity is finite dimensional and, for a dense set of potentials (or, equivalently, for a surface for a fixed potential and a dense set of metrics), the constant function 0 is the only solution that vanishes at infinity. Clearly, for general potentials there can be many solutions that vanish at infinity. One of the key ingredients in these results is a three circles inequality (or log convexity inequality) for the Sobolev norm of a solution u to a Schrodinger equation on a product N × [0, T], where N is a closed manifold with a certain spectral gap. Examples of such N's are all (round) spheres n for n 1 and all Zoll surfaces. Finally, we discuss some examples arising in geometry of such manifolds and Schrodinger operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.