Abstract

Sexual dimorphism often results from hormonally regulated trait differences between the sexes. In sex-role-reversed vertebrates, females often have ornaments used in mating competition that are expected to be under hormonal control. Males of the sex-role-reversed Gulf pipefish (Syngnathus scovelli) develop female-typical traits when they are exposed to estrogens. We aimed to identify genes whose expression levels changed during the development and maintenance of female-specific ornaments. We performed RNA-sequencing on skin and muscle tissue in male Gulf pipefish with and without exposure to estrogen to investigate the transcriptome of the sexually dimorphic ornament of vertical iridescent bands found in females and estrogen-exposed males. We further compared differential gene expression patterns between males and females to generate a list of genes putatively involved in the female secondary sex traits of bands and body depth. A detailed analysis of estrogen-receptor binding sites demonstrates that estrogen-regulated genes tend to have nearby cis-regulatory elements. Our results identified a number of genes that differed between the sexes and confirmed that many of these were estrogen-responsive. These estrogen-regulated genes may be involved in the arrangement of chromatophores for color patterning, as well as in the growth of muscles to achieve the greater body depth typical of females in this species. In addition, anaerobic respiration and adipose tissue could be involved in the rigors of female courtship and mating competition. Overall, this study generates a number of interesting hypotheses regarding the genetic basis of a female ornament in a sex-role-reversed pipefish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.