Abstract

A method is described for estimating rapid rate constants from the distributions of current amplitude observed in single-channel electrical recordings. It has the advantages over previous, similar approaches that it can accommodate both multistate kinetic models and adjustable filtering of the data using an 8-pole Bessel filter. The method is conceptually straightforward: the observed distributions of current amplitude are compared with theoretical distributions derived by combining several simplifying assumptions about the underlying stochastic process with a model of the filter and electrical noise. Parameters are estimated by approximate maximum likelihood. The method was used successfully to estimate rate constants for both a simple two-state kinetic model (the transitions between open and closed states during the rapid gating of an outward-rectifying K(+)-selective channel in the plasma membrane of Acetabularia) and a complex multistate kinetic model (the blockade of the maxi cation channel in the plasma membrane of rye roots by verapamil). For the two-state model, parameters were estimated well, provided that they were not too fast or too slow in relation to the sampling rate. In the three-state model the precision of estimates depended in a complex way on the values of all rate parameters in the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call