Abstract

Although the examination of membrane proteins in planar bilayers is a powerful methodology for evaluating their pharmacology and physiological roles, introducing membrane proteins into bilayers is often a difficult process. Here, we use a mechanical probe to transfer membrane proteins directly from Escherichia coli expression colonies to artificial lipid bilayers. In this way, single-channel electrical recordings can be made from both of the major classes of membrane proteins, alpha-helix bundles and beta barrels, which are represented respectively by a K(+) channel and a bacterial pore-forming toxin. Further, we examined the bicomponent toxin leukocidin (Luk), which is composed of LukF and LukS subunits. We mixed separate LukF- and LukS-expressing colonies and transferred the mixture to a planar bilayer, which generated functional Luk pores. By this means, we rapidly screened binary combinations of mutant Luk subunits for a specific function: the ability to bind a molecular adaptor. We suggest that direct transfer from cells to bilayers will be useful in several aspects of membrane proteomics and in the construction of sensor arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.