Abstract

The water solubility of poly(1-Me-5-VIm) has made it possible to achieve phenomenal rate enhancements and to gain even greater insight into the mechanism of catalysis by polymeric imidazoles. The poly(1-Me-5-VIm)-catalyzed hydrolysis of S12- exhibited saturation in excess catalyst nad in excess substrate. Inhibition of the poly(1-Me-5-Vim) catalyzed hydrolysis of Sn- type substrates by analog inhibitors was also observed. The saturation apparently did not follow a simple Michaelis-Menten mechanism; however, the results could be rationalized by analogy to certain enzymatic systems. Multisite enzymes have long been known to display kinetic patterns different from that exhibited by enzymes with only one active site, i.e. such phenomena as sigmoidal rate vs [S] plots. These phenomena may arise entirely as a result of the multisite nature of the enzyme. Consequently, a synthetic macromolecular catalyst with multiple sites might also be expected to display such characteristics. The poly(1-Me-5-VIm)-catalyzed hydrolysis of S12- is apparently the first synthetic system in which such phenomena have been observed. The intermediacy of an apolar polymer substrate complex for the poly(1-Me-5-VIm)-catalyzed hydrolysis of S12- in water was given support by studies of the effect of temperature on the rate of hydrolysis. Activation parameters were determined for catalysis by 1,5-DMIm and by poly(1-Me-5-VIm). These results showed that the rate enhancement exhibited by the polymer was due entirely to a favorable entropy term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.