Abstract

The ability to resume growth after a dormant period is an important strategy for the survival and spreading of bacterial populations. Energy homeostasis is critical in the transition into and out of a quiescent state. Synechocystis sp. PCC 6803, a non-diazotrophic cyanobacterium, enters metabolic dormancy as a response to nitrogen starvation. We used Synechocystis as a model to investigate the regulation of ATP homeostasis during dormancy, and we unraveled a critical role for sodium bioenergetics in dormant cells. During nitrogen starvation, cells reduce their ATP levels and engage sodium bioenergetics to maintain the minimum ATP content required for viability. When nitrogen becomes available, energy requirements rise, and cells immediately increase ATP levels, employing sodium bioenergetics and glycogen catabolism. These processes allow them to restore the photosynthetic machinery and resume photoautotrophic growth. Our work reveals a precise regulation of the energy metabolism essential for bacterial survival during periods of nutrient deprivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call