Abstract

The cellular metabolism in cyanobacteria is extensively regulated in response to changes of environmental nitrogen availability. Multiple regulators are involved in this process, including a nitrogen-regulated response regulator NrrA. However, the regulatory role of NrrA in most cyanobacteria remains to be elucidated. In this study, we combined a comparative genomic reconstruction of NrrA regulons in 15 diverse cyanobacterial species with detailed experimental characterization of NrrA-mediated regulation in Synechocystis sp. PCC 6803. The reconstructed NrrA regulons in most species included the genes involved in glycogen catabolism, central carbon metabolism, amino acid biosynthesis, and protein degradation. A predicted NrrA-binding motif consisting of two direct repeats of TG(T/A)CA separated by an 8-bp A/T-rich spacer was verified by in vitro binding assays with purified NrrA protein. The predicted target genes of NrrA in Synechocystis sp. PCC 6803 were experimentally validated by comparing the transcript levels and enzyme activities between the wild-type and nrrA-inactivated mutant strains. The effect of NrrA deficiency on intracellular contents of arginine, cyanophycin, and glycogen was studied. Severe impairments in arginine synthesis and cyanophycin accumulation were observed in the nrrA-inactivated mutant. The nrrA inactivation also resulted in a significantly decreased rate of glycogen degradation. Our results indicate that by directly up-regulating expression of the genes involved in arginine synthesis, glycogen degradation, and glycolysis, NrrA controls cyanophycin accumulation and glycogen catabolism in Synechocystis sp. PCC 6803. It is suggested that NrrA plays a role in coordinating the synthesis and degradation of nitrogen and carbon reserves in cyanobacteria.

Highlights

  • Cyanobacterial metabolism is extensively regulated in response to nitrogen limitation

  • Our results indicate that by directly up-regulating expression of the genes involved in arginine synthesis, glycogen degradation, and glycolysis, NrrA controls cyanophycin accumulation and glycogen catabolism in Synechocystis sp

  • Our results indicate that NrrA controls cyanophycin accumulation and glycogen catabolism in Synechocystis sp

Read more

Summary

Introduction

Cyanobacterial metabolism is extensively regulated in response to nitrogen limitation. Results: The regulon of transcriptional factor NrrA was reconstructed in the genomes of diverse cyanobacteria and experimentally characterized in Synechocystis. Conclusion: NrrA controls cyanophycin accumulation and glycogen catabolism in Synechocystis. We combined a comparative genomic reconstruction of NrrA regulons in 15 diverse cyanobacterial species with detailed experimental characterization of NrrAmediated regulation in Synechocystis sp. The reconstructed NrrA regulons in most species included the genes involved in glycogen catabolism, central carbon metabolism, amino acid biosynthesis, and protein degradation. Our results indicate that by directly up-regulating expression of the genes involved in arginine synthesis, glycogen degradation, and glycolysis, NrrA controls cyanophycin accumulation and glycogen catabolism in Synechocystis sp. It is suggested that NrrA plays a role in coordinating the synthesis and degradation of nitrogen and carbon reserves in cyanobacteria

Objectives
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.