Abstract

Biodiversity is essential for maintaining the terrestrial ecosystem multifunctionality (EMF). Recent studies have revealed that the variations in terrestrial ecosystem functions are captured by three key axes: the maximum productivity, water use efficiency, and carbon use efficiency of the ecosystem. However, the role of biodiversity in supporting these three key axes has not yet been explored. In this study, we combined the (i) data collected from more than 840 vegetation plots across a large climatic gradient in China using standard protocols, (ii) data on plant traits and phylogenetic information for more than 2,500 plant species, and (iii) soil nutrient data measured in each plot. These data were used to systematically assess the contribution of environmental factors, species richness, functional and phylogenetic diversity, and community-weighted mean (CWM) and ecosystem traits (i.e., traits intensity normalized per unit land area) to EMF via hierarchical partitioning and Bayesian structural equation modeling. Multiple biodiversity attributes accounted for 70% of the influence of all the variables on EMF, and ecosystems with high functional diversity had high resource use efficiency. Our study is the first to systematically explore the role of different biodiversity attributes, including species richness, phylogenetic and functional diversity, and CWM and ecosystem traits, in the key axes of ecosystem functions. Our findings underscore that biodiversity conservation is critical for sustaining EMF and ultimately ensuring human well-being.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call