Abstract

Pulmonary fibrosis is a progressive disease characterized by fibroblast proliferation and excess deposition of collagen and other extracellular matrix components. Although the origin of fibroblasts is multifactorial, recent data implicate endothelial-to-mesenchymal transition as an important source of fibroblasts. We report herein that loss of the essential autophagy gene ATG7 in endothelial cells (ECs) leads to impaired autophagic flux accompanied by marked changes in EC architecture, loss of endothelial, and gain of mesenchymal markers consistent with endothelial-to-mesenchymal transition. Loss of ATG7 also up-regulates TGFβ signaling and key pro-fibrotic genes in vitro. In vivo, EC-specific ATG7 knock-out mice exhibit a basal reduction in endothelial-specific markers and demonstrate an increased susceptibility to bleomycin-induced pulmonary fibrosis and collagen accumulation. Our findings help define the role of endothelial autophagy as a potential therapeutic target to limit organ fibrosis, a condition for which presently there are no effective available treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.