Abstract

Viruses rely on attachment to specific cell surface receptors to infect host cells. Selective expression of viral receptors has the potential to attenuate infection of susceptible tissues by redirecting virus to cells that cannot support viral replication. We propose that erythrocytes are an ideal instrument for this strategy, because they are present in vast numbers, permeate every organ, and cannot serve as hosts for viral propagation. To test this hypothesis, we generated a transgenic mouse, termed globin transcription factor 1 (GATA1)-coxsackie and adenovirus receptor (CAR), that expressed the CAR on erythrocytes. Coxsackievirus group B (CVB) adhered to the surface of CAR-expressing erythrocytes and was rendered noninfectious. Upon infection with CVB, GATA1-CAR mice had diminished viremia and reduced viral replication in heart, brain, and liver. Furthermore, when faced with a CVB challenge that was lethal to WT littermates, the survival of GATA1-CAR mice was prolonged, and their ultimate mortality was reduced. The GATA1-CAR mouse model presented here demonstrates that erythrocyte expression of CAR limits CVB pathogenesis. Erythrocytes also may be coated with a variety of receptors by nontransgenic methods, making this a very flexible model for the treatment of infectious diseases in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.