Abstract

A brief period of ischemia was used to evaluate an erythrocyte-enriched Krebs-Henseleit (KH) buffer ( n=8) compared to KH only ( n=8) in an isolated working rabbit heart. Experimental protocol was as follows: preischemic baseline, 5 min of global ischemia followed by 45 min of reperfusion. Preischemic heart rate was identical, coronary flow was significantly lower (2.7 versus 5.6 mL/min/g wet wt, p<0.01), the other hemodynamic and biochemical values were significantly higher in erythrocyte-perfused hearts: aortic flow 23.5 versus 12.0, p<0.01; cardiac output 26.2 versus 17.6, p<0.01; all in mL/min/g wet wt; dp/dt max 1286 versus 997 mmHg/s, p<0.01; myocardial oxygen consumption 3.5 versus 2.3 μmol/min/g wet wt, p<0.05. During early reperfusion, in the erythrocyte-perfused hearts, coronary flow further increased ( p<0.003), the other hemodynamic parameters returned to baseline values in both groups. High-energy phosphates showed significantly higher values (ATP 2.0±0.1 versus 1.3±0.1, p<0.05; CrP 2.0±0.2 versus 1.6±0.1, p<0.05 all in μmol/g wct wt), water content was significantly lower (81% versus 74%, p<0.05) in erythrocyte-perfused hearts. It can be concluded that the erythrocyte-perfused working heart model provides excellent oxygenation, leading to superior hemodynamic and metabolic performance. Additionally, in the erythrocyte-perfused hearts preservation of coronary flow reserve underlines the physiological competency of this prepar-ation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call