Abstract

IntroductionCardiac safety assessment, such as lethal arrhythmias and contractility dysfunction, is critical during drug development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been shown to be useful in predicting drug-induced proarrhythmic risk through international validation studies. Although cardiac contractility is another key function, fit-for-purpose hiPSC-CMs in evaluating drug-induced contractile dysfunction remain poorly understood. In this study, we investigated whether alignment of hiPSC-CMs on nanopatterned culture plates can assess drug-induced contractile changes more efficiently than non-aligned monolayer culture. MethodsAligned hiPSC-CMs were obtained by culturing on 96-well culture plates with a ridge-groove-ridge nanopattern on the bottom surface, while non-aligned hiPSC-CMs were cultured on regular 96-well plates. Next-generation sequencing and qPCR experiments were performed for gene expression analysis. Contractility of the hiPSC-CMs was assessed using an imaging-based motion analysis system. ResultsWhen cultured on nanopatterned plates, hiPSC-CMs exhibited an aligned morphology and enhanced expression of genes encoding proteins that regulate contractility, including myosin heavy chain, calcium channel, and ryanodine receptor. Compared to cultures on regular plates, the aligned hiPSC-CMs also showed both enhanced contraction and relaxation velocity. In addition, the aligned hiPSC-CMs showed a more physiological response to positive and negative inotropic agents, such as isoproterenol and verapamil. DiscussionTaken together, the aligned hiPSC-CMs exhibited enhanced structural and functional properties, leading to an improved capacity for contractility assessment compared to the non-aligned cells. These findings suggest that the aligned hiPSC-CMs can be used to evaluate drug-induced cardiac contractile changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.